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Introduction 

The line “Change is must and change is accelerating” is very important in human life. 
There are several changes occur in each and every aspects of human civilization from the 
age of Homo erectus to today informational age. The main component of information age 
is computer which can stored a lot of information giving birth of a discipline namely 
Informatics. Informatics is Informatics is the discipline of science which investigates the 
structure and properties (not specific content) of scientific information, as well as the 
regularities of scientific information activity, its theory, history, methodology and 
organization. The science of informatics is applied indifferent field of science giving 
birth of different discipline namely Bioinformatics, Chemoinformatics, Geoinformatics, 
Health informatics, Laboratory informatics, Neuroinformatics, Social informatics.  

The term "Chemoinformatics" appeared a few years ago and rapidly gained widespread 
use. Workshops and symposia are organized that are exclusively devoted to 
chemoinformatics, and many job advertisements can be found in journals. The first 
mention of chemoinformatics may be attributed to Frank Brown.  
The use of information technology and management has become a critical part of the 
drug discovery process as well as to solve the chemical problems. So, chemoinformatics 
is the mixing of those information resources to transform data into information and 
information into knowledge for the intended purpose of making better decisions faster in 
the area of drug lead identification and organization.  
Whereas we see here chemoinformatics focused on drug design. Greg Paris came up with 
a much broader definition Chemoinformatics is a generic term that encompasses the 
design, creation, organization, management, retrieval, analysis, dissemination, 
visualization, and use of chemical information. Clearly, the transformation of data into 
information and of information into knowledge is an endeavor needed in any branch of 
chemistry not only in drug design. The view that chemoinformatics methods are needed 
in all areas of chemistry and adhere to a much broader definition:  
chemoinformatics is the application of informatics methods to solve chemical problems.  
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Why do we have to use informatics methods in chemistry?  
 
First of all, chemistry has produced an enormous amount of data and this data avalanche 
is rapidly increasing. More than 45 million chemical compounds are known and this 
number is increasing by several millions each year. Novel techniques such as 
combinatorial chemistry and high-throughput screening generate huge amounts of data. 
All this data and information can only be managed and made accessible by storing them 
in proper databases. That is only possible through chemoinformatics. 
 
On the other hand, for many problems the necessary information is not available. We 
know the 3D structure, determined by X ray crystallography for about 300,000 organic 
compounds. Or, as another point, the largest database of infrared spectra contains about 
200,000 spectra. Although these numbers may seem large, they are small in comparison 
to the number of known compounds: We know from less than 1% of all compounds their 
3D structure or have their infrared spectra. The question is then; can we gain enough 
knowledge from the known data to make predictions for those cases where the required 
information is not available?  
There is another reason why we need informatics methods in chemistry: Many problems 
in chemistry are too complex to be solved by methods based on first principles through 
theoretical calculations. This is true, for the relationships between the structure of a 
compound and its biological activity, or for the influence of reaction conditions on 
chemical reactivity.  
 
All these problems in chemistry require novel approaches for managing large amounts of 
chemical structures and data, for knowledge extraction from data, and for modeling 
complex relationships. This is where chemoinformatics methods can come in.  

The representation of the chemoinformatics in graphical form is given below: 

 

 

 

 

 

 

 

Source: authors 
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Extracting knowledge from chemical information -lots of data (structure, activities, 
genes, etc) i.e. called as inductive learning. When we extract data from knowledge, it is 
called as deductive learning. 

Is it Cheminformatics or Chemoinformatics? 
 
The name of our favourite field maybe cheminformatics or chemoinformatics 
chemiinformatics, molecular informatics, chemical informatics, or even 
chemobioinformatics. All these options have some advantages. By using short 
cheminformatics you are saving the keyboard of your computer, chemoinformatics 
sounds nice in sentences like "... our software solution seamlessly integrates 
chemoinformatics and bioinformatics ...", and the title "Head of chemobioinformatics" on 
a business card cannot miss the point. Molecular informatics or chemical informatics is 
less known, but this also means that you are one of the pioneers on the forefront of a new 
scientific field. But the name of chemoinformatics and cheminformatics are synonymous 
in use. In the following table frequencies of words cheminformatics and 
chemoinformatics in web pages are listed, as determined by a popular search engine 
Google. The ratio characterizes popularity of term cheminformatics over 
chemoinformatics.  
 

Year Cheminformatics Chemoinformatics Ratio 

2000 39 684 0.05 

2001 8,010 2,910 2.75 

2002 34,000 16,000 2.12 

2203 58,143 32,872 1.77 

2204 85,435 60,439 1.41 

2005 6,58,298 2,72,096 2.41 

2006 3,17,000+ 1,63,000+ 1.94 

         Source: Leach AR. et.al. (2003) 

History of Chemoinformatics 

The first, and still the core, journal for the subject, the Journal of Chemical 
Documentation, started in 1961 (the name Changed to the Journal of Chemical 
Information and computer Science in 1975). Then the first book appeared in 1971 
(Lynch, Harrison, Town and Ash, Computer Handling of Chemical Structure 
Information). The first international conference on the subject was held in 1973 at 
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Noordwijkerhout and every three years since 1987. The term Chemoinformatics was 
given by Brown in 1998.  

With all the problems at hand in chemistry, complex relationships, profusion of data, lack 
of necessary data, quite early on the need was felt in many areas of chemistry to have 
resort to informatics methods. These various roots of chemoinformatics often go back 
more than 40 years into the 1960s.  

1. Chemical Structure Representation 

In the early sixties, various forms of machine readable chemical structure representations 
were explored as a basis for building databases of chemical structures and reactions. 
Eventually, connection tables that represent molecules by lists of the atoms and of the 
bonds in a molecule gained universal acceptance. Connection tables were also used for 
the Chemical Abstracts Registry System which appeared in the second half of the sixties.   
A connection table stores the same information that is present in a 2D structure diagram, 
namely the atoms that are present in a molecule and what bonds exist between the atoms. 
However, it is stored in a table form which is much easier for a computer to work with. 
Before a connection table is produced, the atoms in the molecule must be numbered, and 
an atom lookup table produced. This simply stores atom information (usually just the 
atom type) cross referenced with the atom number. Here is a numbering and atom lookup 
table for acetaminophen:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                  Source: authors 

 
The atom lookup table describes the atoms present in a molecule, but says nothing about 
how they are connected. 
 
The connection table describes how atoms are connected by bonds, and has a row and a 
column for each atom, the row and column number representing the number given to the 
atom. 

Num Atom 
Type  

1  C  
2  C  
3  C  
4  N  
5  C  
6  O  
7  C  
8  C  
9  C  
10  C  
11  O  
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     Source: authors 

For example, if a bond exists between atom 5 and atom 8, then a “1” is placed at the 
intersection of row 5 and column 8 (and also row 8 and column 5), otherwise a 0 is 
placed at the intersection. Further, we may use a 2 to represent a double bond, 3 to 
represent a triple bond, and so on. Here is the connection table for Acetaminophen, along 
with the diagram showing which numbers correspond to which atoms. For clarity, the 
non-zero entries are showing in bold. Note how the table is symmetrical about the 
diagonal from top left to bottom right. This will always be the case since, for example, if 
atom 3 is bonded to atom 2, then atom 2 is also by definition bonded to atom 3. Since this 
connection table effectively stores each piece of information twice, it is called a 
redundant connection table. Normally, we just store one half of the table in a non-
redundant connection table as shown below: 
 

 

Source: authors 



 6 

 
2. Structure Searching  
 
This involves searching a database for an exact match with a specified query structure. 
For example, if the following is the query.  

 

O

N
H

O
H

 
 
Then only an exact match to this structure would be returned by a search. The techniques 
used to perform the search won’t be covered here, but basically they involve treating the 
2D connection table as a mathematical graph, where the nodes represent atoms and the 
edges represent bonds, and then a test for exact match can be done using a graph 
isomorphism algorithm (a standard computer science technique).  
 
A connection table is essentially a representation of the molecular graph (A graph is a 
mathematical conceptualization of anything that consists of connected points).Therefore, 
for storing a unique representation of a molecule and for allowing its retrieval, the graph 
isomorphism problem had to be solved to define from a set of potential representations of 
a molecule a single one as the unique one. 

The first solution was the Morgan algorithm for numbering the atoms of a molecule in a 
unique and unambiguous manner. By Morgan algorithm atoms of the same elemental 
type can be topologically equivalent or not is judged. Let us label the carbons C, CH and 
CH1H2, and the hydrogens H, H1 and H2. Obviously, only atoms of the same elemental 
type can be topologically equivalent. Thus, it is immediately clear that the carbon atoms 
can be separated from the hydrogen atoms. 

 

The algorithm proceeds by analyzing the extended connectivity in the following way. A 
score is assigned to each atom. Initially, the scores are computed by counting the number 
of bonds formed by each atom: i.e. C = 1, CH = 3 and CH1H2 = 3. This tells us that C is 
unique; hence, amongst the carbons, only CH and CH1H2 can possibly be topologically 
equivalent. All the hydrogens have a score (i.e. sum connectivity) of 1. In the second 
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iteration, the new score of each atom is calculated by summing the first-iteration scores 
of all the atoms to which it is bonded. CH gets a score of 1 (C) + 1 (H) + 3 (CH1H2) = 5. 
CH1H2 gets a score of 3 (CH) + 1 (H1) + 1 (H2) = 5. H gets a score of 3. H1 and H2 also get 
scores of 3. Scores based on summing the atomic numbers of bound atoms are also 
computed: CH gets a score of 13, CH1H2 gets a score of 8 and the protons all score 6. This 
means that CH is distinct from CH1H2. In the third cycle of iteration, the scores based on 
numbers of bonds become 5 for all the protons, but the scores based on atomic numbers 
become 13 for H, and 8 for H1 and H2. Thus, H is distinct from H1 and H2.The 
termination criterion for the iterative process is when no further atoms can be assigned as 
unique by an iteration. At this point, we know which atoms are grouped together: those 
that had the same score at each iteration are topologically equivalent. In this example, the 
fourth pass shows that H1 and H2 are equivalent. This provided the basis for full structure 
searching. Then, methods were developed for substructure searching, for similarity 
searching, and for 3D structure searching.  

Substructure searching  
 
A substructure search involves finding all the structures in a database that contain one or 
more particular structural fragments. For example, we might want to find all of the 
structures in a database which contain the nitro group:  
 

 
 

Substructure searching requires some method of specifying a query (i.e., we want to find 
this and that, but not this, etc). One popular example is SMARTS, an extension to 
SMILES. Mathematically, substructure searching is performed, as with structure 
searching, using a graph representation, but this time a subgraph isomorphism algorithm 
finds occurrences of subgraphs (i.e. substructures) in a structure.  
 
 
Similarity searching  
 
 Similarity searching involves looking for all the structures in a database that are highly 
similar to a given structure. The most common use is to find compounds that could 
exhibit similar properties (based on the similar property principle that compounds with 
similar structures are likely to exhibit similar biological behaviors). Note that “similarity” 
is a subjective thing. As an example, a similarity search might involve looking for 
structures with a similarity greater than 0.7 to this molecule  

N 

O 

O 

?
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Obviously some method is required for measuring similarity. This is usually done using 
fingerprint representations and similarity coefficients as described below, which are used 
in various applications that involve measurement of similarity, for example cluster 
analysis.  
 
Fingerprint representations 
 
A fingerprint characterizes the 2D structure of a molecule, usually through a string of ‘1’s 
and ‘0’s. There are two basic types of fingerprint: structural keys and hashed fingerprints. 
 
Structural Keys -Structural keys contain a string of bits (‘1’s and ‘0’s) where each bit is 
set to 1 or 0 depending on the presence or absence of a particular fragment. They usually 
employ a pre-defined dictionary of fragments.  
 
Hashed fingerprints- In hashed fingerprints, there is no set dictionary or 1:1 relationship 
between bits and features. All possible fragments in a compound are generated. The 
number of fragments represented can be huge. Thus rather than assigning one bit position 
for each fragment, the bits are “hashed” down onto a fixed number of bits. Thus hashed 
fingerprints are a less precise form, but they carry more information. 
Once fingerprint representations are available, similarity coefficients can be used to give 
a measure of similarity between two fingerprints. 

3. Quantitative Structure Activity / Property Relationship (QSAR/QSPR) 

Building on work by Hammett and Taft in the fifties, Hansch and Fujita showed in 1964 
that the influence of substituents on biological activity data can be quantified.  
In the last 40 years, an enormous amount of work on relating descriptors derived from 
molecular structures with a variety of physical, chemical, or biological data has appeared. 
These studies have established Quantitative Structure-Activity Relationships (QSAR) and 
Quantitative Structure-Property Relationships (QSPR) as fields of their own, with their 
own journals, societies, and conferences. 
  
Percent Spikelet Sterility (% Ss) of N-acylanilines Tested in Winter 2001-02 at 1500 
ppm Spray Concentrations on PBW 343 
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Ethyl Oxanilates (R= COOEt) Elkyl Oxanilates 
No. X Ss (%) No. X R Ss (%) 
1 H 64.18 28 4-F COOMe 64.32 
2 2-F 68.13 29 4-F COOiPr 67.15 
3 3-F 50.04 30 4-F COCH3 51.71 
4 3-Cl, 4-F 77.01 31 4-F COOC2H4OMe 67.07 
5 4-F 69.97 32 4-F CH2COOEt 64.66 
6 4- Br 69.06 33 4-Br CH2COOEt 63.40 
7 2-Cl 50.25 34 H CH2COOEt 62.07 
8 3-Cl 44.25 35 2-OMe CH2COOEt 25.51 
9 2,4-Cl2 41.56 36 3-OMe CH2COOEt 20.54 
10 4-Cl 72.09 37 2-NO2 CH2COOEt 12.53 
11 2-OMe 78.02 38 4-F CH2COOCH3 69.12 
12 3-OMe 39.07 39 4-Br CH2COOCH3 63.65 
13 4-OMe 64.39 40 H CH2COOCH3 64.52 
14 2,4-(OMe)2 63.43 41 2-Cl CH2COOCH3 34.03 
15 2-NO2 61.50 42 3-Cl CH2COOCH3 15.53 
16 3-NO2 32.13 43 4-Cl CH2COOCH3 58.65 
17 4-NO2 79.06 44 3-NO2 CH2COOCH3 22.13 
18 2,4-(NO2)2 62.37 45 3-CH3 CH2COOCH3 2.04 
19 3-Me 23.29 46 4-F CH3 61.35 
20 2-CN 61.43 47 4-F CH2Cl 39.02 
21 3-CN 71.74 48 4-Br CH2Cl 39.45 
22 4-CN 66.63 49 H CH2Cl 32.16 
23 2-CF3 64.59 50 4-F CHCl2 63.75 
24 3-CF3 64.86 51 4-Br CHCl2 62.39 
25 4-CF3 69.57 52 H CHCl2 34.85 
26 4-Et 18.49 53 4-F CCl3 69.61 
27 4-iPr 9.41 54 4-Br CCl3 68.69 
   55 H CCl3 46.07 
       
Emulsion Control 0.46    0.46 

CD ( p= 0.05) 0.59    0.60 
 

Source: Gasteiger J. et.al. (2006)  
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Modern QSAR involves applying artificial intelligence and Statistical techniques to 2D 
or 3D molecular representations.  

SAR Application 

 

 

 

 

Source: R. K. Lindsay et. al.  (1980). 
 

At the time of drug design, we have to look after these following points- 

• Single therapeutic target 
• Drug like chemical 
• Some toxicity anticipated 
• Multiple unknown targets 
• Diverse Structures 
• Human and ecosystems 

4. Chemometrics 

Initially, the quantitative analysis of chemical data relied exclusively on multilinear 
regression analysis. However, it was soon recognized in the late sixties that the diversity 
and complexity of chemical data need a wide range of different and more powerful data 
analysis methods. Pattern recognition methods were introduced in the seventies to 
analyze chemical data. In the nineties, artificial neural networks gained prominence for 
analyzing chemical data. The growing of this area led to the establishment of 
chemometrics as a discipline of its own with its own society, journals, and scientific 
meetings.  

                                                  
                                                        Source: R. K. Lindsay et. al.  (1980). 
 

Prediction of toxicity 

DRUG DESIGN 

Minimize toxicity 

ENVIRONMENTAL PROTECTION 

Maximum activity 
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An artificial neural network (ANN) or commonly just neural network (NN) is an 
interconnected group of artificial neurons that uses a mathematical model or 
computational model for information processing based on a connectionist approach to 
computation.  

5. Molecular Modeling 

In the late sixties, R. Langridge and coworkers developed methods for visualizing 3D 
molecular models on the screens of Cathode Ray Tubes. At the same time, G. Marshall 
started visualizing protein structure on graphic screens. The progress in hardware and 
software technology, particularly as concerns graphics screens and graphics cards, has led 
to highly sophisticated systems for the visualization of complex molecular structures in 
great detail. Programs for 3D structure generation, for protein modeling, and for 
molecular dynamics calculations have made molecular modeling a widely used 
technique. The commonly available softwares for molecular modeling are ArgusLab, 
Chimera, and Ghemical. 

6. Computer-Assisted Structure Elucidation (CASE) 

The elucidation of the structure of a chemical compound, be it a reaction product or a 
compound isolated as a natural product, is one of the fundamental tasks of a chemist. 
Structure elucidation has to consider a wide variety of different types of information 
mostly from various spectroscopic methods, and has to consider many structure 
alternatives. Thus, it is an ambitious and demanding task. It is therefore not surprising 
that chemists and computer scientists had taken up the challenge and had started in the 
1960� fs to develop systems for computer-assisted structure elucidation (CASE) as a 
field of exercise for artificial intelligence techniques. The DENDRAL project, initiated in 
1964 at Stanford University gained widespread interest.  
Other approaches to computer-assisted structure elucidation were initiated in the late 
sixties by Sasaki at Toyohashi University of Technology and by Munk at the University 
of Arizona. 

7. Computer-Assisted Synthesis Design (CASD) 

The design of a synthesis for an organic compound needs a lot of knowledge about 
chemical reactions and on chemical reactivity. Many decisions have to be made between 
various alternatives as to how to assemble the building blocks of a molecule and which 
reactions to choose. Therefore, computer-assisted synthesis design (CASD) was seen as a 
highly interesting challenge and as a field for applying artificial intelligence techniques. 
In 1969 Corey and Wipke presented their seminal work on the first steps in the 
development of a synthesis design system. Nearly simultaneously several other groups 
such as Ugi and coworkers, Hendrickson and Gelernter reported on their work on CASD 
systems. Later also at Toyohashi work on a CASD system was initiated. 
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Basics of Chemoinformatics 
    
The various fields outlined in the previous section have grown from humble beginnings 
40 years ago to areas of intensive activities. On top of that it has been realized that these 
areas share a large number of common problems, rely on highly related data, and work 
with similar methods. Thus, these different areas have merged to a discipline of its own: 
Chemoinformatics.  
 

 
 

                             Figure 1. The various areas of activities in chemoinformatics  

Source: Lipinski, C.A et.al., (1997) 

The extent of this field has recently been documented by a "Handbook of 
Chemoinformatics", covering 73 contributions by 65 scientists on 1850 pages in four 
volumes. The following gives an overview of chemoinformatics, emphasizing the 
problems and solutions - common to the various more specialized subfields. 

 
 
 
1. Representation of Chemical Compounds 
 
A whole range of methods for the computer representation of chemical compounds and 
structures has been developed: linear codes, connection tables, matrices. Special methods 
had to be devised to uniquely represent a chemical structure, to perceive features such as 
rings and aromaticity, and to treat stereochemistry, 3D structures, or molecular surfaces. 
Earlier the chemical 2D structure representations are done by software namely 
Chemdraw, ISIS etc. But now, chemical structures are represented by molecular graph. A 
graph is an abstract structure that contains nodes connected by edges. Here nodes are 
represented by atoms and edges by bonds. A graph represents only topology of a 
molecules i.e. the ways the nodes i.e. atoms are connected. 
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Aspirin 
Source: J. Zupan et.al.,(1999). 
 
The aspirin structure can be represented by Graph theory, where Oxygen atom is 
represented by filled bullet and carbon atom is represented by vacant bullet and hydrogen 
atom is not represented here. So, the aspirin structure will be- 
 
For similarities searching we can use the graph isomorphism or by any algorithm. 
 
Linear notations 
 
Structure linear notations convert chemical structure connection tables to a string, a 
sequence of letters, using a set of rules. The earliest structure linear notation was the 
Wiswesser Line Notation (WLN). ISI® adopted WLN to be used in some of their 
products in 1968 and, it is still use today. It was also adopted in the mid 1960s for 
internal use by many pharmaceutical companies. At that time (mid 60s to 80s), it was 
considered the best tool to represent, retrieve and print chemical structures. In WLN, 
letters represents structural fragments and a complete structure is represented as a string. 
This system efficiently compressed structural data and, was very useful to storing and 
searching chemical structures in low performance computer systems. However, the WLN 
is difficult for non- experts to understand. Later, David Weininger suggested a new linear 
notation designated as SMILESTM. Since SMILESTM is very close to the “natural 
language” used by organic chemists, SMILESTM is widely accepted and used in many 
chemical database systems. To successfully represent a structure, a linear notation should 
be canonicalized. That is, one structure should not correspond to more than one linear 
notation string, and conversely, one linear notation string should only be interpreted as 
one structure. 
 
Attempt to condense all of the connectivity information into a single text string. The two 
most popular formats are SMILES (from Daylight) and SLN (Tripos format inspired by 
SMILES). 
 
 

o 

o 

o 
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SMILES (Simplified Molecular Input Line Entry Specification)  
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Acetaminophen 

 
In SMILES, atoms are generally represented by their chemical symbol, with upper-case 
representing an aliphatic atom (C = aliphatic carbon, N = aliphatic nitrogen, etc) and 
lower-case representing an aromatic atom (c = aromatic carbon, etc). Hydrogens are not 
normally represented explicitly. Consecutive characters represent atoms bonded together 
with a single bond. Therefore, the SMILES for propane would simply be: CCC or 1-
propanol would be: CCCO. Double bonds are represented by an “=” sign, e.g. propene 
would be: C=CC. Parentheses are used to represent branching in the molecule, e.g. 
the SMILES for Isopropyl alcohol (2-propanol) is: CC(O)C. Atoms other than the major 
organic ones (C, S, N, O, P, Cl, Br, I, B) or ions must be enclosed in square brackets. 
Ring enclosures are represented by using numbers to signify attachment points, usually 
starting at 1. The first occurrence of the number defines the attachment point, and 
subsequent occurrences indicate that the structure joins back to the attachment point at 
that position. For example, the SMILES for Benzene is as follows (note the small ‘c’ for 
aromatic carbon):  c1ccccc1.  We can also use branching from the ring system, e.g.  
c1cc(Br)ccc1 represents bromobenzene. Note that in many cases there can be several 
SMILES to represent the same structure – for example, we could alternatively represent 
bromobenzene as:  c1cccc(Br)c1. So here is a SMILES representation for 
acetaminophen, the structure at the top of this document: c1c(O)ccc(NC(=O)C)c1. The 
great advantage of these methods is brevity – for example an entire SMILES string can 
be stored in a single spreadsheet cell. However, it is hard to add additional information 
(coordinates, properties, etc) in these formats in an elegant way.  
 
Canonicalization 
 
    If a structure corresponds to a unique WLN or a unique SMILESTM string, then the 
structure search results in a string match. WLN could meet this requirement in most 
cases. The SMILESTM approach can do this after canonical processing. Therefore, both 
WLN and canonical SMILESTM are able to solve structure search problems by string 
matches. A molecular graph (2D structure) can also be canonicalized into a real number 
through a mathematical algorithm. The real number is identified as a molecular topologic 
index. However, two different structures can have the same topologic index. Therefore, 
topologic indices can only be used as screens for accelerating structure database 
searching. Actually, the concept of molecular index was originally proposed for QSAR 
and QSPR studies. Wiener reported the first molecular topological index in 1947 (Brown, 
1998). If a molecule and its specific topologic index had a one-to-one relationship, then 
structure search could be done by number comparison (Brown, 1998). However, 
substructure search still had to use an atom-by-atom matching algorithm, which, as 
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mentioned earlier, could be very time-consuming. In order to further enhance chemical 
database search performance, efforts have been on the way to seek better structural 
screening technologies. 
 
Sources of 3d informations and the Representation of molecules in 3D Form. 
 
3D information can be obtained through X-ray crystallography, NMR spectroscopy or by 
computational means. The basic forms of 3D representation are the coordinate table and 
the distance matrix. 
 
A coordinate table is simply an extension of the atom lookup table that also contains 
coordinates for each atom. These coordinates are relative to a consistent origin. Here is a 
sample coordinate table for Aspirin, along with a 3D structure with the atoms numbered:  
 

 
 
Source: Gasteiger, J., (2003) 
 
Distance matrices are similar to connection tables, except that instead of storing 
connectivity information, they store relative distances (in Angstroms) between all atoms.  
Here is a sample distance matrix for the Aspirin molecule above. Many pattern 
recognition techniques require distance or similarity measurements to quantitatively 
measure the distance or similarity of two objects (in our case, the objects are small 
molecules). Euclidean distance, Mahalanobis distance and correlation coefficients are 
commonly used for distance measurement, 
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Source: Clark and Pickett, (2000) 
 
where n is the number of descriptors, D represents the absolute distance between A and B, 
R represents the angle of vectors A and B in multidimensional space and, is interpreted as 
the quantity of the linear correlation of A and B. The value range of R is between –1 to +1 
that is, from 100% dissimilar to 100% similar. The Euclidian distance assumes that 
variables are uncorrelated. When variables are correlated, the simple Euclidean distance 
is not an appropriate measure, however, the Mahalanobis distance (2) will adequately 
account such correlations. The Tanimoto coefficient is commonly employed for 
similarity measurements of bit-strings of structural fingerprints (Boolean logic). The 
simplified form is 

 
 
Source: Clark and Pickett, (2000) 
 
where α is the count of substructures in structure A, β the count of substructures in 
structure B, and γ is the count of substructures in both A and B. Many different similarity 
calculations have been reported. Holliday, Hu and Willett have published a comparison 
of 22 similarity coefficients for the calculation of inter-molecular similarity and 
dissimilarity, using 2D fragment bit-strings (Clark and Pickett, 2000). 
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Source: Gasteiger, J., (2003) 
 
 
Distance matrices are useful when comparing molecules with each other, whereas 
coordinate tables tend to be used for structure visualization. 
 
2. Representation of Chemical Reactions 
 
Chemical reactions are represented by the starting materials and products as well as by 
the reaction conditions. On top of that, one also has to indicate the reaction site, the bonds 
broken and made in a chemical reaction. Furthermore, the stereochemistry of reactions 
has to be handled. Searching databases of reactions is a little different to straight 
searching, although the kinds of search are the same (structure, substructure, similarity). 
However, searching may be done on reactants, products, or both, and searches may be 
performed for entire reactions (as opposed to single structures). Representation of 
reactions is by the usual means (connection tables, atom lookup tables), but with 
additional information about which molecules are products and reagents, and which 
reagent atoms map to which product atoms. A derivative of SMILES, called Reaction 
SMILES is available for representing reactions, along with a way for defining reaction 
queries called SMIRKS. 
  
3. Data in Chemistry 
 
Much of our chemical knowledge has been derived from data. Chemistry offers a rich 
range of data on physical, chemical, and biological properties: binary data for 
classification, real data for modeling, and spectral data having a high information density. 
These data have to be brought into a form amenable to easy exchange of information and 
to data analysis  
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4. Datasources and Databases 
 
The enormous amount of data in chemistry has led quite early on to the development of 
databases to store and disseminate these data in electronic form. Databases have been 
developed for chemical literature, for chemical compounds, for 3D structures, for 
reactions, for spectra, etc. The internet is increasingly used to distribute data and 
information in chemistry. The databases of virtual molecules are available now i.e. the 
molecules which are not present in the nature, but by just virtually we can prepare 
databases with the help of databases of other molecules. The commonly available 
softwares for databases are Amicbase, Asinex Gold, Cheminformatics.org, FDA MRTD, 
NCI, Otava Dataset, PubChem, and ZINC. 
 
5. Structure Search Methods 
 
In order to retrieve data and information from databases, access has to be provided to 
chemical structure information. Methods have been developed for full structure, for 
substructure, and for similarity searching. Those are discussed in above. 
 
6. Methods for Calculating Physical and Chemical Data 
 
A variety of physical and chemical data of compounds can directly be calculated by a 
range of methods. Foremost are quantum mechanical calculations of various degrees of 
sophistication. However, simple methods such as additive schemes can also be used to 
estimate a variety of data with reasonable accuracy. 
  
7. Calculation of Structure Descriptors 
 
In most cases, however, physical, chemical, or biological properties cannot be directly 
calculated from the structure of a compound. In this situation, an indirect approach has to 
be taken by, first, representing the structure of the compound by structure descriptors, 
and, then, to establish a relationship between the structure descriptors and the property by 
analyzing a series of pairs of structure descriptors and associated properties by inductive 
learning methods. A variety of structure descriptors has been developed encoding 1D, 
2D, or 3D structure information or molecular surface properties. The manipulation and 
analysis of chemical structure information is made through the molecular structure 
descriptors. These are the numerical values which characterizes propertities of molecules. 
They may represents the physiochemical properties of a molecule or may b the values 
derived from the algorithm technique to the chemical structures. For example, the 
molecular weight does not represent the whole properties of a molecule but it is very 
quick. In case of quantum molecular based structure descriptors, it tells about the 
properties of a molecule but it is time consuming. 
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The commonly used molecular descriptors are logP and molar refractivity. 
Hydrophobicity is most commonly modeled using the logarithm values of partition 
coefficient i.e. logP. 
 
 
8. Data Analysis Methods 
 
A variety of methods for learning from data, of inductive learning methods is being used 
in chemistry: statistics, pattern recognition methods, artificial neural networks, genetic 
algorithms. These methods can be classified into unsupervised and supervised learning 
methods and are used for classification or quantitative modeling. The softwares are using 
in data analysis & statistics are ChemTK Lite, PowerMV, & GCluto. 
 
Chemistry Based Data Mining and Exploration 
 
For synthesis a molecule, first we have to search data with the help databases available 
for that molecule, then we have to search the database available for structure analogue. 
Now the Structure activity relationships are studied and different biological or 
mechanistic analogue are synthesized. The scheme is given in below…… 
 

 

Applications of Chemoinformatics 

a. Fields of Chemistry 

The range of applications of chemoinformatics is rich indeed; any field of chemistry can 
profit from its methods. The following lists different areas of chemistry and indicates 
some typical applications of chemoinformatics. It has to be emphasized that this list of 
applications is by far not complete! 

1. Chemical Information 
o storage and retrieval of chemical structures and associated data to manage 

the flood of data by the softwares are available for drawing and databases. 
o dissemination of data on the internet 
o cross-linking of data to information 

2. All fields of chemistry 
o prediction of the physical, chemical, or biological properties of 

compounds 
3. Analytical Chemistry 

Chemical(s) 
of concern 

Chemical  
Specific 
 data 

Structural 
 analogue 

Property 
analogue 

Biological or  
mechanistic  
analogue 

Data bases 

Data mining 

Structure  
searchable 

Structure activity relationships 
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o analysis of data from analytical chemistry to make predictions on the 
quality, origin, and age of the investigated objects 

o elucidation of the structure of a compound based on spectroscopic data 
4. Organic Chemistry 

o prediction of the course and products of organic reactions 
o design of organic syntheses 

5. Drug Design as well as for bioactive molecules. 
o identification of new lead structures 
o optimization of lead structures 
o establishment of quantitative structure-activity relationships 
o comparison of chemical libraries 
o definition and analysis of structural diversity 
o planning of chemical libraries 
o analysis of high-throughput data 
o docking of a ligand into a receptor 

Finally, small molecules can be used for docking and drug screening/discovery. Small 
molecules, as well as their synthetic derivatives, can be docked to a protein target and 
computationally filtered (e.g. by solubility) to produce a ranked list of candidates that can 
then be tested in the laboratory. Known ligands can also be used in similarity searches, or 
as scaffold for further molecular engineering. We will present several recent drug 
discovery efforts that leverage ChemDB and the computational tools described above. In 
particular, the discovery of several compounds has done that can bind to the 
Carboxyltransferase domain of Acyl-CoA Carboxylase, AccD5 from Mycobacterium 
tuberculosis:, a new TB therapeutic target. 

o prediction of the metabolism of xenobiotics 
o analysis of biochemical pathways 
o Modeling of ADME-Tox properties. 

Historically, drug absorption, distribution, metabolism, excretion, and toxicity (ADMET) 
studies in animal models were performed after a lead compound was identified. Now, 
pharmaceutical companies are employing higher-throughput, in vitro assays to evaluate 
the ADMET characteristics of potential leads at earlier stages of development. This is 
done in order to eliminate candidates as early as possible, thus avoiding costs, which 
would have been expended on chemical synthesis and biological testing. Scientists are 
developing computational methods to select only compounds with reasonable ADMET 
properties for screening. Molecules from these computationally screened virtual libraries 
can then be synthesized for high-throughput biological activity screening. As the 
predictive ability of ADME/Tox software improves, and as pharmaceutical companies 
incorporate computational prediction methods into their R&D programs, the drug 
discovery process will move from a screening based to a knowledge-based paradigm. 
Under multi-parametric optimization drug discovery strategies, there is no excuse for 
failing to know the relative solubility and permeability rankings of collections of 
chemical compounds for lead identification. 
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a. Absorption. Passive intestinal absorption (PIA) models have been studied by many 
groups, for years. The fluid mosaic model holds that the structure of a cell membrane is 
an interrupted phospholipid bilayer capable of both hydrophilic and hydrophobic 
interactions. Trans cellular passage through the membrane lipid/aqueous environment is 
the predominant pathway for passive absorption of lipophilic compounds, while low-
molecular-weight (<200), hydrophilic compounds make use of the water-filled channels 
of the tight junctions between membrane cells (paracellular transport). Therefore, 
lipophilicity is considered a key property for activity in drug design and is a common 
property used to estimate the membrane permeability of a molecule. Lipophilicity is 
measured as the log of the partition coefficient between n-octanol and water (logP). LogP 
prediction programs are available and results are reasonably good. But, the relationship 
between logP and permeability is not linear. Permeability drops at both low and high 
logP. It is theorized that These non-linearities due to: (1) the inability of weakly 
lipophilic compounds to penetrate the lipid portion of the membrane and (2) the 
excessive partitioning of strongly lipophilic compounds into the lipid portion of the 
membrane and their subsequent inability to pass through the aqueous portion of the 
membrane. A strong relationship between PIA and polar surface area (PSA) has been 
discovered by several groups. However, the models usually do not take the effects of 
other descriptors into account. In addition, the datasets used to build the PSA models are 
small. Even though a wide range of PSA was covered, it is not necessarily true the 
models cover the entire chemical space. Therefore, linear and non-linear multivariate 
models have been introduced to model PIA based upon: logP, molecular weight, 
Hbonding, free energy, H-bond donor, H-bond acceptor, polarizability, numbers and 
strengths of Hbond acceptor nitrogen and oxygen atoms, number of H-bond donor atoms, 
and lipophilicity (log D at pH 7.4) on the Caco-2 cell permeability. To select the best 
descriptors for predictive models, a genetic algorithm has been used. 
 
b. Distribution. CNS-active drugs (CNS, central nervous system) must cross the blood-
brain barrier (BBB). The experimental determination of the brain-blood partition ratio is 
difficult and timeconsuming to compute since it involves the direct measurement of the 
drug concentration in the brain and blood of laboratory animals. This obviously requires 
the synthesis of the compounds, often in radio labeled form. In vitro techniques to predict 
brain penetration are available, but they are experimentally cumbersome. The earlier 
work involved in correlating log(Cbrain/Cblood) or logBB and logP (octanol-
cyclohexane), Pcyclohexane, or logPoct was based upon smaller (about 20 compounds) 
data sets. More descriptors have been correlated with logBB, such as: excess molar 
refraction, solute polarizability, hydrogen bond acidity and basicity, and molecular 
volume. More recently a regression study on logBB and free energy _G has been 
reported. Descriptors derived from 3D molecular fields to estimate the BBB permeation 
on a larger set of compounds and to produce a simple mathematical model have been 
studied. The method used (VolSurf) transforms 3D fields into descriptors and correlates 
them to the experimental permeation by a discriminates partial least squares procedure. 
Human serum albumin (HSA) protein is the major transporter of non-esterified fatty 
acids, as well as of different drugs and metabolites, to different tissues. HSA allows 
solubilization of hydrophobic compounds, contributes to a more homogeneous 
distribution of drugs in the body, and increases their biological lifetime. The binding 



 22 

strength of any drug to serum albumin is the main factor for availability of that drug to 
diffuse from the circulatory system to target tissues. All these factors cause the 
pharmacokinetics of almost any drug to be influenced and controlled by its binding to 
serum albumin. Therefore, QSAR study on binding of drugs and metabolites to HSA is 
extremely important for the drug distribution. Biosensor analysis for prediction of HSA 
has been reported. In order to build an in silico predictive model for binding affinities to 
HSA, Colmenarejo and coworkers at GlaxoSmithKline used a genetic algorithm to 
exhaustively search and select for multivariate and non-linear equations, starting from a 
large pool of molecular descriptors. They found that hydrophobicity (as measured by the 
ClogP) is the most important variable for determining the binding extent to HSA. Binding 
to HSA turns out to be determined by a combination of hydrophobic forces together with 
some modulating shape factors. This agrees with X-ray structures of HSA alone or, 
bound to ligands, where the binding pockets of both sites I and II are composed mainly of 
hydrophobic residues. 
 
c. Metabolism. Drug metabolism is another barrier to overcome. Metabolism is studied, 
by in vitro, in vivo and in silico approaches. HTS has been used for metabolism and 
pharmacokinetics. In vitro approaches determine metabolic stability, screening for 
inhibitors of specific cytochrome P450 isozymes and, identifying the most important 
metabolites. In vivo approaches measure hepatic metabolic clearance, volume of 
distribution, bioavailability, and, identify major metabolites. In silico approaches are 
categorized into three classes: QSAR and pharmacophore models, protein models, and 
expert systems. QSAR and pharmacophore models predict substrates and inhibitors of a 
specific cytochrome P450 isozyme. Protein models rationalize metabolite formations and 
identify possible substrates, potential metabolites or, inhibitors by means of docking 
algorithms. Stereoelectronic factors involved in metabolic transformations can be taken 
into account using quantum chemical calculations. Expert systems are predictive 
databases that attempt to identify potential metabolites of a compound as determined by 
knowledge based rules defining the most likely products. Testa advised that in structure-
metabolism relationship (SMR) studies, the greater the chemical diversity of the 
investigated compounds, the smaller the chance that SMRs exist and can be uncovered. 
On the other hand, the information content of an SMR (if it exists) will increase as the 
boundaries of the chemical space increases and as the diversity of the compounds under 
investigation increases. This paradox may limit the capacity of SMR, no matter which 
approach is used. Keseru and Molnar think efficient PK optimization requires metabolic 
diversity within the focused library that cannot be achieved by the application of a simple 
SMR with limited information content. The high degree of structural similarity 
(especially in combinatorial libraries with a common core) prevents the application in 
metabolic diversity analysis. Therefore, they introduced a metabolic fingerprint concept, 
METAPRINT, for the assessment of metabolic similarity and diversity in combinatorial 
chemical libraries. Their metabolic fingerprint was developed by predicting metabolic 
pathways and corresponding potential metabolites. 
 
d. Excretion/Elimination. Drugs such as the non-steroidal anti-inflammatory drugs 
(NSAIDs), are used in long term treatment. The accumulation of these drugs in the body 
may lead to serious side effects. Therefore, the prediction of half-life, which determines 
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the length of time a drug will persist in the body, is important in order to reduce 
subsequent drug failures. Prediction of half-life is difficult, due to the multi-faceted 
nature of drug elimination. Distribution of drug in fat and major organs, excretion by 
kidneys and metabolism by liver all contribute to the rate at which a drug is eliminated 
from the body. On the other hand, it may be possible to make use of qualitative 
predictions of half-life. Such information can be used, for example, to predict whether a 
drug is likely to accumulate to a significant extent when used for prolonged treatment. 
 
e. Toxicity. Many drugs are withdrawn for safety reasons and there are many reasons, 
including metabolism and excretion/elimination that cause toxicity. Current toxicity 
prediction approaches use either mechanistic or correlative methods. Correlative systems 
take molecular descriptors, biological data, and chemical structures and, by use of 
statistical analysis of data sets, represent them in mathematical models. The models 
describe the relationships between structure and activity and can be used to predict 
toxicity. The mechanistic approach involves human experts who make a considered 
assessment of the mechanism of interaction with a biological system, taking the 
molecular properties, biological data, and chemical structures into account. The 
correlative approach uses an unbiased assessment of the data to generate relationships 
and predict toxicity. It is capable of discovering potentially new SARs and, can lead to 
new ideas in the human assessment of mechanisms by which chemicals interact with 
biological systems. It is most useful for congeneric data sets or when one has a large 
amount of good data but little mechanistic knowledge. However, it can also generate 
relationships that have little chemical or biological plausibility. Results obtained are 
heavily dependent upon the quality of the data used to build the model. For these reasons 
careful validation is required for effective use of the correlative approach. The 
mechanistic method is based upon an understanding or hypothesis of the mechanisms of 
molecular interactions that determine the activity, i.e., there is some human input into the 
system of SAR generation. However, systems using this approach are restricted to human 
knowledge, being incapable of discovering new relationships automatically. As a 
consequence, they also have a tendency to be biased toward current ideas about 
mechanisms of action. The early toxicity models were based on QSAR models and were 
used to predict LD50, based upon various descriptors. It was also reported that QSAR 
models (partial least-squares (PLS), Bayesian regularized neural network) correlating 
IGC50 with the hydrophobicity, the logarithm of the 1 octanol/water partition coefficient, 
the molecular orbital properties, the lowest unoccupied molecular orbital energy (Elumo) 
and, maximum acceptor super delocalizability (Amax). More QSAR models are still 
coming forth. A representative mechanistic toxicity prediction approach was reported by 
Sanderson and co-workers. The program is now commercially available. Artificial neural 
networks (ANN) have recently been applied in toxicity predictions; these include: back-
propagation neural network,Varied as these areas are and diversified as these applications 
are, the field of chemoinformatics is by far not fully developed. There are many areas and 
problems that can still benefit from the application of chemoinformatics methods. There 
is much space for innovation in seeking for new applications and for developing new 
methods. 
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 b.Teaching of Chemoinformatics 

Chemists have to become more efficient in planning their experiments, have to extract 
more knowledge from their data. Chemoinformatics can help in this endeavor. 
Furthermore, it is important that a certain amount of chemoinformatics is integrated into 
chemistry curricula in order that chemists realize where chemoinformatics could help 
them, where they best ask chemoinformatics experts. In addition, a few universities have 
to offer training for chemoinformatics specialists. The first steps have already been made 
at a variety of universities around the globe. More has to come in order that more experts 
on chemoinformatics are trained that society so urgently needs? The universities are 
offering courses on Chemoinformatics are  University of Sheffield (Willett) - MSc/PhD 
programs, University of Erlangen (Gasteiger), UCSF (Kuntz), University of 
Texas (Pearlman), Yale (Jorgensen), University of Michigan  (Crippen), Indiana 
University  (Wiggins) - MSc program, Cambridge Unilever (Glen, Goodman, Murray-
Rust), Scripps - Molecular Graphics lab, Bioinformatics Institute Of India , Chandigarh. 

    
Model to predict toxicity 
    

 
Source: Clark, D. E., (2000) 
 
 
Chemoinformatics in Textile Industry 
 
Combinatorial organic synthesis (COS),high through-put screening (HTS), and 
chemoinformatics (CI) are highly efficient and cost-effective tools to develop novel, 
state-of-the-art, non-toxic chemicals (e.g. dyes, colorants, finishes, pigments, surfactants, 
etc.) of commercial importance to the textile industry. 
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Combinatorial Organic Synthesis (COS)- 
 
Earlier a Quest 210 SLN Organic Synthesizer which can run up to twenty reactions 
simultaneously, integrating multi-step solution-phase synthesis, workup, initial 
purification and product collection. The Organic Synthesizer can heat, cool, mix, reflux, 
perform liquid-liquid extractions, concentrate products, etc. Now, it is integrated with a 
CombiFlashTM purification system which allows state-of-the-art productivity and versa-
tility in automated organic purification systems. It is the system of choice for methods 
development, variable scale automation. It incorporates on-line detection, flexible sample 
loading and supports a PC-based method for data man-agement; each sample can be run 
with customized parame-ters for sample size, solvent system, and gradient and flow rate. 
 

By integrating CombiFlash
TM 

with the organic synthesizer the combinatorial effort 
helps to synthesize other chemicals of importance to the textile industry. A typical library 
synthesized using this integrated approach is shown in Scheme 1. 
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Synthesis of Azo dye 
 Source: Bhat et.al.,(2002).                  

 
High-Throughput Screening (HTS) 
 
HTS is the integration of technologies (laboratory automation, assay technology, micro 
plate based instrumentation, etc.) to quickly screen chemical compounds in search of a 
desired activity. While the preliminary results are promising we are keeping other options 
open, such as COPASTM technology which can optically analyze, sort and dispense 
various kinds of small diverse molecules including combinatorial beads and plant seeds. 
 
Chemoinformatics (CI) 
 

Chemoinformatics to explore differences in structural and electronic features in 
positional isomers is an integral part of the overall combinatorial process. Based on 
density functional theory calculations that there are differences in the carcinogenic 
behaviors of azo dyes. Quantitative structure-activity relationships that correlated the 
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observed mutagenic activity of 43 aminoazobenzene derivative with a variety (>300) of 
molecular descriptors (constitutional, topological, geometrical, electrostatic, quantum-
chemical and thermodynamic) calculated using quantum-chemical semi empirical 
methodology.  
 
Chemo bioinformatics 
    
Biochemoinformatics (or chemobioinformatics) is a new term to describe the research 
efforts on meeting the emerging needs for the integration of bioinformatics and 
chemoinformatics. Historically, bioinformatics and chemoinformatics have largely 
evolved independently from biology and chemistry. Generally speaking, bioinformatics 
deals with biological information, which although traditionally refers to sequences 
information on large biological molecules such as DNA, RNA and proteins, also refers to 
the more recent emergence of micro array data on gene and protein expression. 
 
Chemoinformatics on the other hand mainly deals with chemical information of drug-like 
small molecules, the molecular weight of these being several hundred Daltons. The 
elemental data record in bioinformatics is centered on genes and their products (RNA, 
protein, and so on), whereas the fundamental data type in chemoinformatics is centered 
on small molecules.  

 
Source: Drews,J.,(2000) 
 
Key challenges 
 
The key challenge for computational methods then is not traveling through chemical 
space per se, but rather to be able to focus traveling expeditions in a vast chemical space 
towards interesting regions, and to be able to recognize interesting stars and galaxies 
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when they are encountered. The notion of what is interesting may vary of course with the 
task (e.g. drug discovery, reaction discovery, polymer discovery). But at the most 
fundamental level what is needed are tools to predict the physical, chemical, and 
biological properties of small molecules and reactions in order to focus searches and filter 
search results. Computational methods in chemistry can be organized along a spectrum 
ranging from Schrodinger equation, to molecular dynamics, to statistical machine 
learning methods. Quantum mechanical methods, or even molecular dynamics methods, 
are computationally intensive and do not scale well to large datasets. These methods are 
best applied to specific questions on focused small datasets. Statistical and machine 
learning methods are more likely to yield successful approaches for rapidly sifting 
through large datasets of chemical information. Because in the absence of large public 
database and datasets, chemoinformatics is in a state reminiscent of bioinformatics two or 
three decades ago, it may be productive to adapt the lessons learnt from bioinformatics to 
chemoinformatics, while maintaining also a perspective on the fundamental differences 
between these two relatively young interdisciplinary sciences. If this analogy is correct, 
two key ingredients were essential for unlocking the large-scale development of 
bioinformatics and the application of modern statistical machine learning methods to 
biological data, data and similarity measures. In bioinformatics, such as Genbank, 
Swissprot, and the PDB while alignment algorithms have provided robust similarity 
measures with their fast BLAST implementation becoming the workhorse of the field. 
Mutatis mutandis, the same is likely to be true in chemoinformatics. 
 
This new drug discovery strategy, challenges cheminformatics in the following aspects:  
 
(1) cheminformatics should be able to extract knowledge from large-scale raw HTS 
databases in a shorter time periods, (2) cheminformatics should be able to provide 
efficient in silico tools to predict ADMET properties,  

 

Conclusions 

Chemoinformatics has developed over the last 40 years to a mature discipline that has 
applications in any area of chemistry. Chemoinformatics is the science of determining 
those important aspects of molecular structures related to desirable properties for some 
given function. One can contrast the atomic level concerns of drug design where 
interaction with another molecule is of primary importance with the set of physical 
attributes related to ADME, for example. In the latter case, interaction with a variety of 
macromolecules provides a set of molecular filters that can average out specific 
geometrical details and allows significant models developed by consideration of 
molecular properties alone. The field has gained so much in importance that the major 
topics of chemoinformatics have to be integrated into chemistry curricula, a few 
universities have to offer full chemoinformatics curricula to satisfy the urgent need for 
chemoinformation specialists. There are still many problems that await a solution and 
therefore we still will see many new developments in chemoinformatics.  
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