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I ntroduction

The line “Change is must and change is acceleratmgery important in human life.
There are several changes occur in each and espegta of human civilization from the
age ofHomo erectus to today informational age. The main componenhfmfrmation age
is computer which can stored a lot of informatiawirgg birth of a discipline namely
Informatics. Informatics is Informatics is the d@me of science which investigates the
structure and properties (not specific contentsa@éntific information, as well as the
regularities of scientific information activity, sittheory, history, methodology and
organization. The science of informatics is appliedifferent field of science giving
birth of different discipline namely Bioinformatic€hemoinformatics, Geoinformatics,
Health informatics, Laboratory informatics, Neurfoirmatics, Social informatics.

The term "Chemoinformatics" appeared a few yeacsayl rapidly gained widespread
use. Workshops and symposia are organized that exdusively devoted to
chemoinformatics, and many job advertisements carfooind in journals. The first
mention of chemoinformatics may be attributed to arkr Brown.
The use of information technology and managemestbdeome a critical part of the
drug discovery process as well as to solve the @@ mroblems. So, chemoinformatics
is the mixing of those information resources tonsfarm data into information and
information into knowledge for the intended purpo$enaking better decisions faster in
the area of drug lead identification and organazati
Whereas we see here chemoinformatics focused @nddisign. Greg Paris came up with
a much broader definition Chemoinformatics is aegienterm that encompasses the
design, creation, organization, management, relkievanalysis, dissemination,
visualization, and use of chemical information. &g, the transformation of data into
information and of information into knowledge is andeavor needed in any branch of
chemistry not only in drug design. The view thaeminformatics methods are needed
in all areas of chemistry and adhere to a much dmoa definition:
chemoinformatics is the application of informatmsthods to solve chemical problems
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Why do we have to use informatics methodsin chemistry?

First of all, chemistry has produced an enormousiarhof data and this data avalanche
is rapidly increasing. More than 45 million cheniicampounds are known and this

number is increasing by several millions each yddovel techniques such as

combinatorial chemistry and high-throughput scregrgenerate huge amounts of data.
All this data and information can only be managed made accessible by storing them
in proper databases. That is only possible thralggmoinformatics.

On the other hand, for many problems the necedsémymation is not available. We
know the 3D structure, determined by X ray crys@iaphy for about 300,000 organic
compounds. Or, as another point, the largest de¢abhfinfrared spectra contains about
200,000 spectra. Although these numbers may semm, lthey are small in comparison
to the number of known compounds: We know from teas 1% of all compounds their
3D structure or have their infrared spectra. Thestjon is then; can we gain enough
knowledge from the known data to make predictiarstfiose cases where the required
information is not available?
There is another reason why we need informatichioakst in chemistry: Many problems
in chemistry are too complex to be solved by methioalsed on first principles through
theoretical calculations. This is true, for theat®lnships between the structure of a
compound and its biological activity, or for theflience of reaction conditions on
chemical reactivity.

All these problems in chemistry require novel apgfes for managing large amounts of
chemical structures and data, for knowledge extractrom data, and for modeling
complex relationships. This is where chemoinforosathethods can come in.

The representation of the chemoinfor maticsin graphical form is given below:
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Extracting knowledge from chemical information dobf data (structure, activities,
genes, etc) i.e. called as inductive learning. Wierextract data from knowledge, it is
called as deductive learning.

Isit Cheminformatics or Chemoinfor matics?

The name of our favourite field maybe cheminforemtior chemoinformatics

chemiinformatics, molecular informatics, chemical nformatics, or even

chemobioinformatics. All these options have somevaathges. By using short
cheminformatics you are saving the keyboard of yoamputer, chemoinformatics
sounds nice in sentences like "... our softwareutgwml seamlessly integrates
chemoinformatics and bioinformatics ...", and title tHead of chemobioinformatics” on
a business card cannot miss the point. MolecuFarrmatics or chemical informatics is
less known, but this also means that you are otleegpioneers on the forefront of a new
scientific field. But the name of chemoinformatarsd cheminformatics are synonymous
in use. In the following table frequencies of wordsheminformatics and

chemoinformatics in web pages are listed, as dateanby a popular search engine
Google. The ratio characterizes popularity of tercheminformatics over

chemoinformatics.

Y ear Cheminfor matics Chemoinformatics Ratio
2000 39 684 0.05
2001 8,010 2,910 2.75
2002 34,000 16,000 2.12
2203 58,143 32,872 1.77
2204 85,435 60,439 1.41
2005 6,58,298 2,72,096 2.41
2006 3,17,000+ 1,63,000+ 1.94

Source: Leach AR.et.al. (2003)

History of Chemoinfor matics

The first, and still the core, journal for the <edij the Journal of Chemical
Documentation, started in 1961 (the name Changed to foernal of Chemical
Information and computer Science in 1975). Then the first book appeared in 1971
(Lynch, Harrison, Town and AshComputer Handling of Chemical Sructure
Information). The first international conference on the subjeeis held in 1973 at



Noordwijkerhout and every three years since 198% Term Chemoinformatics was
given by Brown in 1998.

With all the problems at hand in chemistry, compiebationships, profusion of data, lack
of necessary data, quite early on the need wasnfettany areas of chemistry to have
resort to informatics methods. These various r@dtshemoinformatics often go back
more than 40 years into the 1960s.

1. Chemical Structure Representation

In the early sixties, various forms of machine edadd chemical structure representations
were explored as a basis for building databaseshemmical structures and reactions.
Eventually, connection tables that represent mddschy lists of the atoms and of the
bonds in a molecule gained universal acceptancené&ion tables were also used for
the Chemical Abstracts Registry System which apguksr the second half of the sixties.
A connection table stores the same information ihatesent in a 2D structure diagram,
namely the atoms that are present in a moleculendwad bonds exist between the atoms.
However, it is stored in a table form which is mwedsier for a computer to work with.
Before a connection table is produced, the atontsarmolecule must be numbered, and
an atom lookup table produced. This simply stores atom information (Ugu@st the
atom type) cross referenced with the atom numbere lis a numbering and atom lookup
table for acetaminophen:

Num | Atom
Type

1 C

2 C

3 C

4 N

5 C

6 @)

7 C

8 C

9 C

10 C Source: authors

11 O

The atom lookup table describes the atoms presemtmolecule, but says nothing about
how they are connected.

The connection table describes how atoms are ctethéy bonds, and has a row and a
column for each atom, the row and column numberesgmting the number given to the
atom.
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Source: authors

For example, if a bond exists between atorand atom8, then a “1” is placed at the
intersection of rows and column8 (and also row8 and columnb5), otherwise a 0 is
placed at the intersection. Further, we may useta &present a double bond, 3 to
represent a triple bond, and so on. Here is thaexdion table for Acetaminophen, along
with the diagram showing which numbers correspanaviiich atoms. For clarity, the
non-zero entries are showing in bold. Note how tdigle is symmetrical about the
diagonal from top left to bottom right. This willveays be the case since, for example, if
atom 3 is bonded to atom 2, then atom 2 is alsodfiypition bonded to atom 3. Since this
connection table effectively stores each piece rdbrmation twice, it is called a
redundant connectiotable. Normally, we just store one half of the table annon-

redundant connection tabds shown below:
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Source: authors




2. Structure Sear ching

This involves searching a database for an exaothmaith a specified query structure.
For example, if the following is the query.

g 7}
o}
M@
Then only an exact match to this structure woulddberned by a search. The techniques
used to perform the search won'’t be covered herebésically they involve treating the
2D connection table as a mathematical graph, wtherenodes represent atoms and the

edges represent bonds, and then a test for exachnsan be done using graph
isomorphism algorithm (a standard computer science technique

A connection table is essentially a representatibthe molecular graph (A graph is a
mathematical conceptualization of anything thatststs of connected points).Therefore,
for storing a unique representation of a moleculé far allowing its retrieval, the graph

isomorphism problem had to be solved to define feoget of potential representations of
a molecule a single one as the unique one.

The first solution was the Morgan algorithm for rhering the atoms of a molecule in a
unique and unambiguous manner. By Morgan algoritttoms of the same elemental
type can be topologically equivalent or not is jedgLet us label the carbons G, énd
Chinz, and the hydrogens H,1Hand H. Obviously, only atoms of the same elemental
type can be topologically equivalent. Thus, itmmamediately clear that the carbon atoms
can be separated from the hydrogen atoms.

H1

H2

The algorithm proceeds by analyzing the extendeshectivity in the following way. A
score is assigned to each atom. Initially, theesxare computed by counting the number
of bonds formed by each atome. C = 1, Gy = 3 and Ganz = 3. This tells us that C is
unique; hence, amongst the carbons, onlya@d G2 can possibly be topologically
equivalent. All the hydrogens have a scare. Gum connectivity) of 1. In the second



iteration, the new score of each atom is calculatedumming the first-iteration scores
of all the atoms to which it is bondedy @ets a score of 1 (C) + 1 (H) + 342 = 5.
Chinz getsascore of 3 (C+ 1 (H) + 1 (H) = 5. H gets a score of 3;ldnd B also get
scores of 3. Scores based on summing the atomidensnof bound atoms are also
computed: G gets a score of 13,2 gets a score of 8 and the protons all score & Thi
means that Gis distinct from Gino. In the third cycle of iteration, the scores based
numbers of bonds become 5 for all the protonsthritscores based on atomic numbers
become 13 for H, and 8 for;Hand H. Thus, H is distinct from Hand H.The
termination criterion for the iterative processvisen no further atoms can be assigned as
unique by an iteration. At this point, we know whiatoms are grouped together: those
that had the same score at each iteration aredgigally equivalent. In this example, the
fourth pass shows that;ldnd H are equivalent. This provided the basis for ftrilisture
searching. Then, methods were developed for sudisteu searching, for similarity
searching, and for 3D structure searching.

Substructure sear ching

A substructure search involves finding all the cfinees in a database that contain one or
more particular structural fragments. For example, might want to find all of the
structures in a database which contain the nitogr
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Substructure searching requires some method offgipgca query (i.e., we want to find
this and that, but notthis, etc). One popular example is SMARTS, an extensmn
SMILES. Mathematically, substructure searching isrf@rmed, as with structure
searching, using a graph representation, but ithis &subgraph isomorphism algorithm
finds occurrences of subgraphs (i.e. substructimesstructure.

Similarity searching

Similarity searching involves looking for all tistructures in a database that are highly
similar to a given structure. The most common s¢oi find compounds that could
exhibit similar properties (based on the similangarty principle that compounds with
similar structures are likely to exhibit similaiolgical behaviors). Note that “similarity”
is a subjective thing. As an example, a similaggarch might involve looking for
structures with a similarity greater than 0.7 tis tholecule
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Obviously some method is required for measuringlarity. This is usually done using
fingerprint representations and similarity coeffitis as described below, which are used

in various applications that involve measurementsiphilarity, for example cluster
analysis.

Finger print representations

A fingerprint characterizes the 2D structure of@eunule, usually through a string of ‘1’'s
and ‘0’s. There are two basic types of fingerprittuctural keys and hashed fingerprints.

Structural Keys-Structural keys contain a string of bits (‘1’s a@®) where each bit is
set to 1 or 0 depending on the presence or absércparticular fragment. They usually
employ a pre-defined dictionary of fragments.

Hashed finger prints- In hashed fingerprints, there is no set dictigrar1:1 relationship
between bits and features. All possible fragments icompound are generatéithe
number of fragments represented can be huge. Hbusrithan assigning one bit position
for each fragment, the bits are “hashed” down @nfxed number of bits. Thus hashed
fingerprints are a less precise form, but theyycarore information.

Once fingerprint representations are availafigilarity coefficients can be used to give
a measure of similarity between two fingerprints.

3. Quantitative Structure Activity / Property Relationship (QSAR/QSPR)

Building on work by Hammett and Tatft in the fiftigdansch and Fujita showed in 1964
that the influence of substituents on biologicaltvaty data can be quantified.
In the last 40 years, an enormous amount of worketating descriptors derived from
molecular structures with a variety of physicalewtical, or biological data has appeared.
These studies have established Quantitative Stesétativity Relationships (QSAR) and
Quantitative Structure-Property Relationships (QBB® fields of their own, with their
own journals, societies, and conferences.

Percent Spikelet Sterility (% Ss) of N-acylanilines Tested in Winter 2001-02 at 1500
ppm Spray Concentrations on PBW 343
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Ethyl Oxanilates (R= COOEt)

Elkyl Oxanilates

No X Ss (%) No. X R Ss (%)
1 H 64.18 28 4-F COOMe 64.32
2 2-F 68.13 29 4-F COOiPr 67.15
3 3-F 50.04 30 4-F COCH 51.71
4 3-Cl, 4-F 77.01 31 4-F coeB,OMe  67.07
5 4-F 69.97 32 4-F CILOOEt 64.66
6 4- Br 69.06 33 4-Br CHCOOEt 63.40
7 2-Cl 50.25 34 H CHCOOEt 62.07
8 3-Cl 44.25 35 2-OMe CILOOEt 25.51
9 2,4-C)h 41.56 36 3-OMe CHCOOEt 20.54
10 4-Cl 72.09 37 2-N© CH,COOEt 12.53
11 2-OMe 78.02 38 4-F GEa0OO0CH 69.12
12 3-OMe 39.07 39 4-Br ClEO0CH; 63.65
13 4-OMe 64.39 40 H Ci£O0OCH; 64.52
14 2,4-(OMe) 63.43 41 2-Cl ChCOOCH 34.03
15 2-NQ 61.50 42 3-Cl ChCOOCH 15.53
16 3-NGQ 32.13 43 4-Cl ChCOOCH 58.65
17 4-NG 79.06 44 3-N@ CH,COOCH; 22.13
18 2,4-(NQ)2 62.37 45 3-CH CH,COOCH; 2.04
19 3-Me 23.29 46 4-F CH 61.35
20 2-CN 61.43 47 4-F ciel 39.02
21 3-CN 71.74 48 4-Br Ciel 39.45
22 4-CN 66.63 49 H Cicl 32.16
23 2-CR 64.59 50 4-F CHGI 63.75
24 3-Ck 64.86 51 4-Br CHGI 62.39
25 4-CR 69.57 52 H CHGI 34.85
26 4-Et 18.49 53 4-F cel 69.61
27 4-iPr 9.41 54 4-Br cel 68.69

55 H CC} 46.07
Emulsion Control 0.46 0.46
CD (p=0.05) 0.59 0.60

Source: Gasteiger .Jet.al. (2006)



Modern QSAR involves applying artificial intelligea and Statistical techniques to 2D
or 3D molecular representations.

DRUG DESIGHM

SAR Application

Maximum activity Prediction of toxicity

ENVIRONMENTAL PROTECTION
Minimize toxicity

Source: R. K. Lindsayet. al. (1980).

At the time of drug design, we have to look aftexse following points-

¢ Single therapeutic target

e Drug like chemical

e Some toxicity anticipated
e Multiple unknown targets

o Diverse Structures

¢ Human and ecosystems

4. Chemometrics

Initially, the quantitative analysis of chemicaltaarelied exclusively on multilinear

regression analysis. However, it was soon recogdnizehe late sixties that the diversity
and complexity of chemical data need a wide rarfggifterent and more powerful data
analysis methods. Pattern recognition methods vireduced in the seventies to
analyze chemical data. In the nineties, artificialral networks gained prominence for
analyzing chemical data. The growing of this ared ko the establishment of
chemometrics as a discipline of its own with itsnogociety, journals, and scientific

meetings.
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Source: R. K. Lindsayet. al. (1980).
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An artificial neural network (ANN) or commonly justeural network (NN) is an
interconnected group of artificial neurons that suse mathematical model or
computational model for information processing loase a connectionist approach to
computation.

5. Molecular Modding

In the late sixties, R. Langridge and coworkersetflgyed methods for visualizing 3D
molecular models on the screens of Cathode Raysluktethe same time, G. Marshall
started visualizing protein structure on graphicesns. The progress in hardware and
software technology, particularly as concerns giapscreens and graphics cards, has led
to highly sophisticated systems for the visual@atof complex molecular structures in
great detail. Programs for 3D structure generatifam, protein modeling, and for
molecular dynamics calculations have made molecumdeling a widely used
technique. The commonly available softwares for eoolar modeling are ArgusLab,
Chimera, and Ghemical.

6. Computer-Assisted Structure Elucidation (CASE)

The elucidation of the structure of a chemical cooml, be it a reaction product or a
compound isolated as a natural product, is onédheffindamental tasks of a chemist.
Structure elucidation has to consider a wide waragdt different types of information
mostly from various spectroscopic methods, and twasconsider many structure
alternatives. Thus, it is an ambitious and demandask. It is therefore not surprising
that chemists and computer scientists had taketheighallenge and had started in the
1960 fs to develop systems for computer-assisted streiodlucidation (CASE) as a
field of exercise for artificial intelligence tedaoes. The DENDRAL project, initiated in
1964 at Stanford University gained widespread ager
Other approaches to computer-assisted structu@dation were initiated in the late
sixties by Sasaki at Toyohashi University of Tedbgg and by Munk at the University
of Arizona.

7. Computer-Assisted Synthesis Design (CASD)

The design of a synthesis for an organic compougeds a lot of knowledge about
chemical reactions and on chemical reactivity. Mdagisions have to be made between
various alternatives as to how to assemble thalibgilblocks of a molecule and which
reactions to choose. Therefore, computer-assistatiesis design (CASD) was seen as a
highly interesting challenge and as a field forlgimg artificial intelligence techniques.
In 1969 Corey and Wipke presented their seminalkwamn the first steps in the
development of a synthesis design system. Neanmtylsaneously several other groups
such as Ugi and coworkers, Hendrickson and Geleraported on their work on CASD
systems. Later also at Toyohashi work on a CASegysvas initiated.

11



Basics of Chemoinfor matics

The various fields outlined in the previous secti@mve grown from humble beginnings
40 years ago to areas of intensive activities. @pndf that it has been realized that these
areas share a large number of common problemsprelyighly related data, and work
with similar methods. Thus, these different areagehmerged to a discipline of its own:
Chemoinformatics.

Chemoinformatics

/ \

Reaction Structure | Structure Chemo-

Representation | | Representation | | Descriptors | | metrics

1~ N/

Molecular | | Structure CASE Property
Modeling | | Searching Prediction

CASD

Figure 1. The vari@aseas of activities in chemoinformatics
Source: Lipinski, C.Aet.al., (1997)

The extent of this field has recently been docuegnby a "Handbook of
Chemoinformatics"”, covering 73 contributions by &&entists on 1850 pages in four
volumes. The following gives an overview of chenfioimatics, emphasizing the
problems and solutions - common to the various mepeeialized subfields.

1. Representation of Chemical Compounds

A whole range of methods for the computer reprediem of chemical compounds and
structures has been developed: linear codes, chondables, matrices. Special methods
had to be devised to uniquely represent a chersioatture, to perceive features such as
rings and aromaticity, and to treat stereochemif®tBy structures, or molecular surfaces.
Earlier the chemical 2D structure representations done by software namely
Chemdraw, ISIS etc. But now, chemical structuresrapresented by molecular graph. A
graph is an abstract structure that contains nedesected by edges. Here nodes are
represented by atoms and edges by bonds. A gragmlesents only topology of a
molecules i.e. the ways the nodes i.e. atoms aneexted.

12
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Aspirin

Source: J. Zuparet.al.,(1999).

The aspirin structure can be represented by Grapbry, where Oxygen atom is
represented by filled bullet and carbon atom isesgnted by vacant bullet and hydrogen
atom is not represented here. So, the aspirintateuwill be-

For similarities searching we can use the grapmagphism or by any algorithm.
Linear notations

Structure linear notations convert chemical stmectaonnection tables to a string, a
sequence of letters, using a set of rules. Theesarstructure linear notation was the
Wiswesser Line Notation (WLN). ISI® adopted WLN be used in some of their
products in 1968 and, it is still use today. It waso adopted in the mid 1960s for
internal use by many pharmaceutical companieshat time (mid 60s to 80s), it was
considered the best tool to represent, retrieve @imd chemical structures. In WLN,
letters represents structural fragments and a campltructure is represented as a string.
This system efficiently compressed structural datd, was very useful to storing and
searching chemical structures in low performancemaer systems. However, the WLN
is difficult for non- experts to understand. Lat@gvid Weininger suggested a new linear
notation designated as SMILESTM. Since SMILESTMvey close to the “natural
language” used by organic chemists, SMILESTM isebljidaccepted and used in many
chemical database systems. To successfully regrasstructure, a linear notation should
be canonicalized. That is, one structure shouldcootespond to more than one linear
notation string, and conversely, one linear notastring should only be interpreted as
one structure.

Attempt to condense all of the connectivity infotioa into a single text string. The two

most popular formats are SMILES (from Daylight) &ldN (Tripos format inspired by
SMILES).

13



SMILES (Simplified Molecular Input Line Entry Specification)

Acetaminophen

In SMILES, atoms are generally represented by ttieémical symbol, with upper-case
representing an aliphatic atom (C = aliphatic carbd = aliphatic nitrogen, etc) and
lower-case representing an aromatic atom (c = aioroarbon, etc). Hydrogens are not
normally represented explicitly. Consecutive chemacrepresent atoms bonded together
with a single bond. Therefore, the SMILES for pnopavould simply be: CCC or 1-
propanol would be: CCCO. Double bonds are repredeny an “=" sign, e.g. propene
would be: C=CC. Parentheses are used to represamthing in the molecule, e.g.
the SMILES for Isopropyl alcohol (2-propanol) is: C(D)C. Atoms other than the major
organic ones (C, S, N, O, P, CI, Br, |, B) or ionsst be enclosed in square brackets.
Ring enclosures are represented by using numbesgify attachment points, usually
starting at 1. The first occurrence of the numbefings the attachment point, and
subsequent occurrences indicate that the struging back to the attachment point at
that position. For example, the SMILES for Benzenas follows (note the small ‘c’ for
aromatic carbon): clccceccl. We can also use biagpérom the ring system, e.g.
clcc(Br)cccl represents bromobenzene. Note thatany cases there can be several
SMILES to represent the same structure — for exaywe could alternatively represent
bromobenzene as: clcccc(Br)cl. So here is a SMILEPresentation for
acetaminophen, the structure at the top of thisuehent: clc(O)ccc(NC(=0)C)cl. The
great advantage of these methods is brevity —xXamgle an entire SMILES string can
be stored in a single spreadsheet cell. Howeveés, hard to add additional information
(coordinates, properties, etc) in these formatnirlegant way.

Canonicalization

If a structure corresponds to a unique WLN amaue SMILESTM string, then the
structure search results in a string match. WLNIdoueet this requirement in most
cases. The SMILESTM approach can do this after maabprocessing. Therefore, both
WLN and canonical SMILESTM are able to solve stmoetsearch problems by string
matches. A molecular graph (2D structure) can his@anonicalized into a real number
through a mathematical algorithm. The real numbedeéntified as a molecular topologic
index. However, two different structures can hawe same topologic index. Therefore,
topologic indices can only be used as screens foelarating structure database
searching. Actually, the concept of molecular ingeas originally proposed for QSAR
and QSPR studies. Wiener reported the first mosedobological index in 1947 (Brown,
1998). If a molecule and its specific topologicemdhad a one-to-one relationship, then
structure search could be done by number compar{own, 1998). However,
substructure search still had to use an atom-byratwatching algorithm, which, as

14



mentioned earlier, could be very time-consumingoider to further enhance chemical
database search performance, efforts have beemeonvay to seek better structural
screening technologies.

Sour ces of 3d informations and the Representation of moleculesin 3D Form.

3D information can be obtained through X-ray criystaaphy, NMR spectroscopy or by
computational means. The basic forms of 3D reptatien are thecoordinate table and
thedistance matrix.

A coordinate table is simply an extension of thenaookup table that also contains
coordinates for each atom. These coordinates ttveeto a consistent origin. Here is a
sample coordinate table for Aspirin, along withaSructure with the atoms numbered:

Atom | Label X Y il
1 C -1.8520 |-0.9920]-1.5760
2 C -1.3680|-2.1480)-0.92880
2 C -0.0760 | -2.1440) -0. 4540
4 C 0.7080 |-0.9840)-0.5200
3 C 0.2000 |-0.15360]-1.1560
i) C -0.1020 | 0.1600 | -1.6520
7 ] 2.0840 |-1.0280] 0.1040
8 ] 2.5320 |-2.0320] 0.6260
Q C 2.9760 | 0.0240 | 0.1120
10 ] 0.7320 | 1.2320 |-1.0840
11 ] 0.6680 | 2.0240 | 0.0220
12 C 1.2000 | 3.0600 | 0.1520
13 C -0.2400) 1.5760 | 1.4440

Source: Gasteiger, J., (2003)

Distance matrices are similar to connection tabkes;ept that instead of storing
connectivity information, they store relative distas (in Angstroms) between all atoms.
Here is a sample distance matrix for the Aspirinleoole above. Many pattern
recognition techniques require distance or similarneasurements to quantitatively
measure the distance or similarity of two objedts dur case, the objects are small
molecules). Euclidean distance, Mahalanobis distasad correlation coefficients are
commonly used for distance measurement,

15
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wheren is the number of descriptod,represents the absolute distance betweandB,
Rrepresents the angle of vectédrandB in multidimensional space and, is interpreted as
the quantity of the linear correlation AfandB. The value range d® is between —1 to +1
that is, from 100% dissimilar to 100% similar. TE®clidian distance assumes that
variables are uncorrelated. When variables areslated, the simple Euclidean distance
is not an appropriate measure, however, the Mabhiardistance (2) will adequately
account such correlations. The Tanimoto coefficiemt commonly employed for
similarity measurements of bit-strings of structuiiagerprints (Boolean logic). The
simplified form is

ru,s:r=#ﬁ_y : @

Source: Clark and Pickett, (2000)

where o is the count of substructures in structéef the count of substructures in
structureB, andy is the count of substructures in b&tfandB. Many different similarity
calculations have been reported. Holliday, Hu ande® have published a comparison
of 22 similarity coefficients for the calculationf anter-molecular similarity and
dissimilarity, using 2D fragment bit-strings (Claakd Pickett, 2000).

16



1 12 B @B B e F B 2 10|11 12 |13
1 la4p4p 28R 43822114124 (2.7 2.9 4.2
2 l4pR4peEIpBE1LEO0R24 13729 1.2)5.6
3 l4p4pdap2aapepm? 471964
4 l4pRI3eERsR4BE.TH.7THR6]61
= 1.3 4123 1.4 2.3 2.7 3.5 4.8
& 1.211.2E.5)2.8 4.4 3.9]5.0
Fa 2.2 1.7 (5.7 ]5.2]6.3
B LB 2.5 4.2 3.5 4.3
o 1.4 2.6 )2.3)2.7
10 2211325
11 1.2)2.4
1z 1.5
13

Source: Gasteiger, J., (2003)

Distance matrices are useful when comparing madsculith each other, whereas
coordinate tables tend to be used for structunealiation.

2. Representation of Chemical Reactions

Chemical reactions are represented by the stamiaigrials and products as well as by
the reaction conditions. On top of that, one als® o indicate the reaction site, the bonds
broken and made in a chemical reaction. Furtherjrtbee stereochemistry of reactions
has to be handled. Searching databases of readsoaslittle different to straight
searching, although the kinds of search are thes gatructure, substructure, similarity).
However, searching may be done on reactants, ptadoc both, and searches may be
performed for entire reactions (as opposed to simgjfuctures). Representation of
reactions is by the usual means (connection taldesn lookup tables), but with
additional information about which molecules ar®ducts and reagents, and which
reagent atoms map to which product atoms. A deviwaif SMILES, calledReaction
SMILES is available for representing reactions, along vaitivay for defining reaction
gueries calle@®MIRKS.

3. Datain Chemistry

Much of our chemical knowledge has been derivedhfaata. Chemistry offers a rich

range of data on physical, chemical, and biologipabperties: binary data for

classification, real data for modeling, and spéctasa having a high information density.
These data have to be brought into a form amenaldasy exchange of information and
to data analysis
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4. Datasour ces and Databases

The enormous amount of data in chemistry has lé@ garly on to the development of
databases to store and disseminate these datadimoeic form. Databases have been
developed for chemical literature, for chemical poonds, for 3D structures, for
reactions, for spectra, etc. The internet is irgirgdy used to distribute data and
information in chemistry.The databases of virtual molecules are available in@. the
molecules which are not present in the nature, dyujust virtually we can prepare
databases with the help of databases of other mleecThe commonly available
softwares for databases are Amicbase, Asinex @jfldminformatics.org, FDA MRTD,
NCI, Otava Dataset, PubChem, and ZINC.

5. Structur e Search M ethods

In order to retrieve data and information from thatses, access has to be provided to
chemical structure information. Methods have beemebbped for full structure, for
substructure, and for similarity searching. Thasediscussed in above.

6. Methodsfor Calculating Physical and Chemical Data

A variety of physical and chemical data of compauedn directly be calculated by a
range of methods. Foremost are quantum mecharatallations of various degrees of
sophistication. However, simple methods such astimddschemes can also be used to
estimate a variety of data with reasonable accuracy

7. Calculation of Structure Descriptors

In most cases, however, physical, chemical, orogichl properties cannot be directly
calculated from the structure of a compound. Is iiuation, an indirect approach has to
be taken by, first, representing the structurehef tcompound by structure descriptors,
and, then, to establish a relationship betweemstitueture descriptors and the property by
analyzing a series of pairs of structure descripsord associated properties by inductive
learning methods. A variety of structure descriptbas been developed encoding 1D,
2D, or 3D structure information or molecular sudgmoperties. The manipulation and
analysis of chemical structure information is matleough the molecular structure
descriptors. These are the numerical values whhelacterizes propertities of molecules.
They may represents the physiochemical properties mmolecule or may b the values
derived from the algorithm technique to the chemis@auctures. For example, the
molecular weight does not represent the whole ptigseof a molecule but it is very
quick. In case of quantum molecular based structlgscriptors, it tells about the
properties of a molecule but it is time consuming.
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The commonly used molecular descriptors are logRl anolar refractivity.
Hydrophobicity is most commonly modeled using tlgarithm values of partition
coefficient i.e. logP.

8. Data Analysis M ethods

A variety of methods for learning from data, of iretive learning methods is being used
in chemistry: statistics, pattern recognition mehartificial neural networks, genetic
algorithms. These methods can be classified insup@rvised and supervised learning
methods and are used for classification or qudivitanodeling. The softwares are using
in data analysis & statistics are ChemTK Lite, Pové, & GCluto.

Chemistry Based Data Mining and Exploration

For synthesis a molecule, first we have to seasth dith the help databases available
for that molecule, then we have to search the dawlavailable for structure analogue.
Now the Structure activity relationships are stddiand different biological or
mechanistic analogue are synthesized. The schegieeis in below......

Structure

searchable

Chemical(s) Chemical Structural Property Biological or

of concern _’Specific — > analogue — ~analogue ~— mechanistic
data analogue

Data bases

Data mining Structure activity relationships

Applications of Chemoinfor matics

a. Fields of Chemistry

The range of applications of chemoinformatics ¢ findeed; any field of chemistry can
profit from its methods. The following lists difiemt areas of chemistry and indicates
some typical applications of chemoinformatics. dshHo be emphasized that this list of
applications is by far not complete!

1. Chemical Information
o storage and retrieval of chemical structures asd@ated data to manage
the flood of data by the softwares are availabtalfawing and databases.
o dissemination of data on the internet
o cross-linking of data to information
2. All fields of chemistry
o prediction of the physical, chemical, or biologicaroperties of
compounds
3. Analytical Chemistry
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o analysis of data from analytical chemistry to makedictions on the
quality, origin, and age of the investigated olgect
o elucidation of the structure of a compound basedpattroscopic data
4. Organic Chemistry
o prediction of the course and products of orgaractiens
o design of organic syntheses
5. Drug Design as well as for bioactive molecules.
o identification of new lead structures
optimization of lead structures
establishment of quantitative structure-activitatienships
comparison of chemical libraries
definition and analysis of structural diversity
planning of chemical libraries
analysis of high-throughput data
docking of a ligand into a receptor

O O 0O o o o o

Finally, small molecules can be used for docking drug screening/discovery. Small
molecules, as well as their synthetic derivativezs) be docked to a protein target and
computationally filtered (e.g. by solubility) togatuce a ranked list of candidates that can
then be tested in the laboratory. Known ligandsalaa be used in similarity searches, or
as scaffold for further molecular engineering. Wél \present several recent drug
discovery efforts that leverage ChemDB and the adatpnal tools described above. In
particular, the discovery of several compounds lklame that can bind to the
Carboxyltransferase domain of Acyl-CoA CarboxylagecD5 from Mycobacterium
tuberculosis;, a new TB therapeutic target.

o prediction of the metabolism of xenobiotics
o analysis of biochemical pathways
o Modeling of ADME-Tox properties.

Historically, drug absorption, distribution, metéibm, excretion, and toxicity (ADMET)
studies in animal models were performed after d lsampound was identified. Now,
pharmaceutical companies are employing higher-tifiput, in vitro assays to evaluate
the ADMET characteristics of potential leads atliearstages of development. This is
done in order to eliminate candidates as early assiple, thus avoiding costs, which
would have been expended on chemical synthesidbhoical testing. Scientists are
developing computational methods to select only maumds with reasonable ADMET
properties for screening. Molecules from these adgatpnally screened virtual libraries
can then be synthesized for high-throughput bialalgiactivity screening. As the
predictive ability of ADME/Tox software improvesné as pharmaceutical companies
incorporate computational prediction methods inteirt R&D programs, the drug
discovery process will move from a screening based knowledge-based paradigm.
Under multi-parametric optimization drug discovestyategies, there is no excuse for
failing to know the relative solubility and permdap rankings of collections of
chemical compounds for lead identification.
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a. Absorption. Passive intestinal absorption (PIA) models havenbsadied by many
groups, for years. The fluid mosaic model holdg tha structure of a cell membrane is
an interrupted phospholipid bilayer capable of bdiydrophilic and hydrophobic
interactions. Trans cellular passage through thelnane lipid/aqueous environment is
the predominant pathway for passive absorptionipgphilic compounds, while low-
molecular-weight (<200), hydrophilic compounds maise of the water-filled channels
of the tight junctions between membrane cells (@ahalar transport). Therefore,
lipophilicity is considered a key property for atty in drug design and is a common
property used to estimate the membrane permealofitg molecule. Lipophilicity is
measured as the log of the partition coefficierttieen n-octanol and water (logP). LogP
prediction programs are available and results easanably good. But, the relationship
between logP and permeability is not linear. Pebiliéa drops at both low and high
logP. It is theorized that These non-linearitiese do: (1) the inability of weakly
lipophilic compounds to penetrate the lipid portioh the membrane and (2) the
excessive partitioning of strongly lipophilic compwls into the lipid portion of the
membrane and their subsequent inability to passugir the agueous portion of the
membrane. A strong relationship between PIA anarmpsurface area (PSA) has been
discovered by several groups. However, the modsislly do not take the effects of
other descriptors into account. In addition, theadets used to build the PSA models are
small. Even though a wide range of PSA was coveite$, not necessarily true the
models cover the entire chemical space. Theretorear and non-linear multivariate
models have been introduced to model PIA based :upmgP, molecular weight,
Hbonding, free energy, H-bond donor, H-bond acagptolarizability, numbers and
strengths of Hbond acceptor nitrogen and oxygemsitomumber of H-bond donor atoms,
and lipophilicity (log D at pH 7.4) on the Caco-8licpermeability. To select the best
descriptors for predictive models, a genetic atbanihas been used.

b. Distribution. CNS-active drugs (CNS, central nervous system) moiasts the blood-
brain barrier (BBB). The experimental determinatafrthe brain-blood partition ratio is
difficult and timeconsuming to compute since itohxes the direct measurement of the
drug concentration in the brain and blood of labtmraanimals. This obviously requires
the synthesis of the compounds, often in radiolé&b&rm.In vitro techniques to predict
brain penetration are available, but they are empmitally cumbersome. The earlier
work involved in correlating log(Cbrain/Cblood) dogBB and logP (octanol-
cyclohexane), Pcyclohexane, or logPoct was based amaller (about 20 compounds)
data sets. More descriptors have been correlatéd lvgBB, such as: excess molar
refraction, solute polarizability, hydrogen bondid#y and basicity, and molecular
volume. More recently a regression study on logBRl dree energy G has been
reported. Descriptors derived from 3D moleculaldeto estimate the BBB permeation
on a larger set of compounds and to produce a sim@lthematical model have been
studied. The method used (VolSurf) transforms 3d8§ into descriptors and correlates
them to the experimental permeation by a discritemaartial least squares procedure.
Human serum albumin (HSA) protein is the major $porter of non-esterified fatty
acids, as well as of different drugs and metalglite different tissues. HSA allows
solubilization of hydrophobic compounds, contritutéo a more homogeneous
distribution of drugs in the body, and increasesrtlviological lifetime. The binding
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strength of any drug to serum albumin is the mamtdr for availability of that drug to

diffuse from the circulatory system to target tmssu All these factors cause the
pharmacokinetics of almost any drug to be influenaad controlled by its binding to

serum albumin. Therefore, QSAR study on bindinglefgs and metabolites to HSA is
extremely important for the drug distribution. Beosor analysis for prediction of HSA
has been reported. In order to buildiamilico predictive model for binding affinities to

HSA, Colmenarejo and coworkers at GlaxoSmithKlireedi a genetic algorithm to

exhaustively search and select for multivariate ao-linear equations, starting from a
large pool of molecular descriptors. They found tingdrophobicity (as measured by the
ClogP) is the most important variable for determgnihe binding extent to HSA. Binding

to HSA turns out to be determined by a combinatibhydrophobic forces together with
some modulating shape factors. This agrees witlayXstructures of HSA alone or,

bound to ligands, where the binding pockets of lsités | and Il are composed mainly of
hydrophobic residues.

c. Metabolism. Drug metabolism is another barrier to overcome.aldelism is studied,
by in vitro, in vivo andin silico approaches. HTS has been used for metabolism and
pharmacokineticsIn vitro approaches determine metabolic stability, screerforg
inhibitors of specific cytochrom@®450 isozymes and, identifying the most important
metabolites.In vivo approaches measureepatic metabolic clearance, volume of
distribution, bioavailability, and, identify majanetabolites.In silico approaches are
categorized into three classes: QSAR ahdrmacophore models, protein models, and
expert systems. QSAR and pharmacophore maateldict substrates and inhibitors of a
specific cytochrome P450 isozyme. Protein modationalize metabolite formations and
identify possible substrates, potential metabolesinhibitors by means of docking
algorithms. Stereoelectronic factors involvedmetabolic transformations can be taken
into account using quantum chemical calculationgpe systems are predictive
databases that attempt to identify potential meti@soof a compound agetermined by
knowledge based rules defining the most likely pietd. Testa advisetiat in structure-
metabolism relationship (SMR) studies, the gredter chemical diversity of the
investigated compounds, the smaller the chanceSh#Rs exist and can be uncovered.
On theother hand, the information content of an SMR t(iéxists) will increase as the
boundaries of thehemical space increases and as the diversityeotdmpounds under
investigation increases. This paradox may limit ¢apacity of SMR, no matter which
approach is used. Keseru addlnar think efficient PK optimization requires raéblic
diversity within the focusetibrary that cannot be achieved by the applicatiba simple
SMR with limited information content. The high degree of structural similarity
(especially in combinatorial libraries with@mmon core) prevents the application in
metabolic diversity analysis. Therefore, they idtroeda metabolic fingerprint concept,
METAPRINT, for the assessment of metabolic simifaginddiversity in combinatorial
chemical libraries. Their metabolic fingerprint wdsveloped bypredicting metabolic
pathways and corresponding potential metabolites.

d. Excretion/Elimination. Drugs such as the non-steroidal anti-inflammatorygd

(NSAIDs), are used in long term treatment. The audation of these drugs in the body
may lead to serious side effects. Therefore, tieeliption of half-life, which determines
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the length of time a drug will persist in the body, important in order to reduce

subsequent drug failures. Prediction of half-lige difficult, due to the multi-faceted

nature of drug elimination. Distribution of drug fat and major organs, excretion by
kidneys and metabolism by liver all contribute be trate at which a drug is eliminated
from the body. On the other hand, it may be posstol make use of qualitative

predictions of half-life. Such information can bsged, for example, to predict whether a
drug is likely to accumulate to a significant extesen used for prolonged treatment.

e. Toxicity. Many drugs are withdrawn for safety reasons andetlage many reasons,
including metabolism and excretion/elimination tratuse toxicity. Current toxicity
prediction approaches use either mechanistic oeledive methods. Correlative systems
take molecular descriptors, biological data, anénaical structures and, by use of
statistical analysis of data sets, represent thermathematical models. The models
describe the relationships between structure aniditgcand can be used to predict
toxicity. The mechanistic approach involves humapeets who make a considered
assessment of the mechanism of interaction withicdodical system, taking the
molecular properties, biological data, and chemistluctures into account. The
correlative approach uses an unbiased assessmém ofata to generate relationships
and predict toxicity. It is capable of discoveripgtentially new SARs and, can lead to
new ideas in the human assessment of mechanismghiojr chemicals interact with
biological systems. It is most useful for congenetata sets or when one has a large
amount of good data but little mechanistic knowkdglowever, it can also generate
relationships that have little chemical or bioladiplausibility. Results obtained are
heavily dependent upon the quality of the data usduliild the model. For these reasons
careful validation is required for effective use tfe correlative approach. The
mechanistic method is based upon an understandimgpothesis of the mechanisms of
molecular interactions that determine the activis., there is some human input into the
system of SAR generation. However, systems usiisgaiproach are restricted to human
knowledge, being incapable of discovering new mfehips automatically. As a
consequence, they also have a tendency to be biasemtd current ideas about
mechanisms of action. The early toxicity modelseMeased on QSAR models and were
used to predict LB, based upon various descriptors. It was also tegahat QSAR
models (partial least-squares (PLS), Bayesian aeigeld neural network) correlating
IGC50 with the hydrophobicity, the logarithm of thectanol/water partition coefficient,
the molecular orbital properties, the lowest unpeed molecular orbital energy (Elumo)
and, maximum acceptor super delocalizability (Ama¥pre QSAR models are still
coming forth. A representative mechanistic toxi@tgdiction approach was reported by
Sanderson and co-workers. The program is now comatigravailable. Artificial neural
networks (ANN) have recently been applied in tayig@redictions; these include: back-
propagation neural network,Varied as these areaarat diversified as these applications
are, the field of chemoinformatics is by far ndtyfuleveloped. There are many areas and
problems that can still benefit from the applicatimf chemoinformatics methods. There
is much space for innovation in seeking for newligppons and for developing new
methods.
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b.T eaching of Chemoinfor matics

Chemists have to become more efficient in planriver experiments, have to extract
more knowledge from their data. Chemoinformaticsn daelp in this endeavor.
Furthermore, it is important that a certain amaeinthemoinformatics is integrated into
chemistry curricula in order that chemists realigere chemoinformatics could help
them, where they best ask chemoinformatics explertsddition, a few universities have
to offer training for chemoinformatics specialisthe first steps have already been made
at a variety of universities around the globe. Maas to come in order that more experts
on chemoinformatics are trained that society scentty needs? The universities are
offering courses on Chemoinformatics are Univgreit Sheffield (Willett) - MSc/PhD
programs, University of Erlangen (Gasteiger), UQ&&ntz), University of
Texas (Pearlman), Yale (Jorgensen), University oifchigan (Crippen), Indiana
University (Wiggins) - MSc program, Cambridge Wwr (Glen, Goodman, Murray-
Rust), Scripps - Molecular Graphics lab, Bioinfotios Institute Of India , Chandigarh.

M odel to predict toxicity

Toxicity

o oolcity Risk Asag
Prediction ~Tent

o FeSPonse .
\'\\IO ay,

Problem i tesROnSe booes 0o

Source: Clark, D. E., (2000)

Chemoinformaticsin Textile I ndustry

Combinatorial organic synthesis (COS),high thropgh- screening (HTS), and
chemoinformatics (CI) are highly efficient and ceffective tools to develop novel,
state-of-the-art, non-toxic chemicabsg; dyes, colorants, finishes, pigments, surfactants,
etc.) of commercial importance to the textile ingys
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Combinatorial Organic Synthesis (COS)-

Earlier a Quest 210 SLN Organic Synthesizer whiah cun up to twenty reactions
simultaneously, integrating multi-step solution-pha synthesis, workup, initial
purification and product collection. The Organion8esizer can heat, cool, mix, reflux,
perform liquid-liquid extractions, concentrate puots, etc. Now, it is integrated with a
CombiFlashM purification system which allows state-of-the-productivity and versa-
tility in automated organic purification systems.d the system of choice for methods
development, variable scale automation. It incaapes on-line detection, flexible sample
loading and supports a PC-based method for dataag@ment; each sample can be run
with customized parame-ters for sample size, solsgstem, and gradient and flow rate.

™
By integrating CombiFlash with the organic synthesizer the combinatorial effo
helps to synthesize other chemicals of importandbé textile industry. A typical library
synthesized using this integrated approach is shov@&themel.
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Synthesisof Azo dye
Sour ce: Bhatet.al.,(2002).

High-Throughput Screening (HTS)

HTS is the integration of technologies (laboratagtomation, assay technology, micro
plate based instrumentation, etc.) to quickly setreleemical compounds in search of a
desired activityWhile the preliminary results are promising we leeeping other options
open, such as COPASTM technology which can opticafialyze, sort and dispense
various kinds of small diverse molecules includoognbinatorial beads and plant seeds.

Chemoinformatics (Cl)
Chemoinformatics to explore differences in struatuand electronic features in
positional isomers is an integral part of the ollecambinatorial process. Based on

density functional theory calculations that there differences in the carcinogenic
behaviors of azo dyefQuantitative structure-activity relationships tratrrelated the
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observed mutagenic activity of 43 aminoazobenzemwvative with a variety (>300) of

molecular descriptors (constitutional, topologicgéometrical, electrostatic, quantum-
chemical and thermodynamic) calculated using quasthemical semi empirical

methodology.

Chemo bhioinfor matics

Biochemoinformatics (or chemobioinformatics) is ewnterm to describe the research
efforts on meeting the emerging needs for the mtégn of bioinformatics and
chemoinformatics. Historically, bioinformatics anchemoinformatics have largely
evolved independently from biology and chemistrgnérally speaking, bioinformatics
deals with biological information, which althoughaditionally refers to sequences
information on large biological molecules such &A) RNA and proteins, also refers to
the more recent emergence of micro array data ne ged protein expression.

Chemoinformatics on the other hand mainly dealb witemical information of drug-like
small molecules, the molecular weight of these dpeseveral hundred Daltons. The
elemental data record in bioinformatics is centesadgenes and their products (RNA,
protein, and so on), whereas the fundamental gg&ih chemoinformatics is centered
on small molecules.

Historical toxicity data

>
Species Activity
Tissue Dose nes
4  |Functional Genes
Group ilie
Phys-chem families
Properties Protein
Profil
Structural analogue rotl Genomics
Size, Shape / Proteomics

Chemical structures
Source: Drews,J.,(2000)

K ey challenges

The key challenge for computational methods thenas traveling through chemical
space per se, but rather to be able to focus tr@vekpeditions in a vast chemical space
towards interesting regions, and to be able togeize interesting stars and galaxies
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when they are encountered. The notion of whattey@sting may vary of course with the
task (e.g. drug discovery, reaction discovery, pwy discovery). But at the most
fundamental level what is needed are tools to ptettie physical, chemical, and
biological properties of small molecules and reawiin order to focus searches and filter
search results. Computational methods in chemcsiry be organized along a spectrum
ranging from Schrodinger equation, to molecular afgits, to statistical machine
learning methods. Quantum mechanical methods, @n ewlecular dynamics methods,
are computationally intensive and do not scale teelarge datasets. These methods are
best applied to specific questions on focused suhahsets. Statistical and machine
learning methods are more likely to yield succdssfoproaches for rapidly sifting
through large datasets of chemical information.d8se in the absence of large public
database and datasets, chemoinformatics is inerstainiscent of bioinformatics two or
three decades ago, it may be productive to adagdetisons learnt from bioinformatics to
chemoinformatics, while maintaining also a perspecon the fundamental differences
between these two relatively young interdiscipfnaciences. If this analogy is correct,
two key ingredients were essential for unlocking tlarge-scale development of
bioinformatics and the application of modern stetad machine learning methods to
biological data, data and similarity measures. lainfformatics, such as Genbank,
Swissprot, and the PDB while alignment algorithnaveh provided robust similarity
measures with their fast BLAST implementation beicmnthe workhorse of the field.
Mutatis mutandis, the same is likely to be truehemoinformatics.

This new drug discovery strategy, challenges chmmmatics in the following aspects:

(1) cheminformatics should be able to extract kmolge from large-scale raw HTS
databases in a shorter time periods, (2) chemirdgbes should be able to provide
efficient in silico tools to predict ADMET propegs,

Conclusions

Chemoinformatics has developed over the last 4@sytaa mature discipline that has
applications in any area of chemistry. Chemoinfdrosais the science of determining
those important aspects of molecular structurestedlto desirable properties for some
given function. One can contrast the atomic levehcerns of drug design where
interaction with another molecule is of primary on@ance with the set of physical
attributes related to ADME, for example. In thedatcase, interaction with a variety of
macromolecules provides a set of molecular filtérat can average out specific
geometrical details and allows significant modelsvadloped by consideration of
molecular properties alone. The field has gainednsch in importance that the major
topics of chemoinformatics have to be integratetb inhemistry curricula, a few
universities have to offer full chemoinformaticsriicula to satisfy the urgent need for
chemoinformation specialists. There are still m@ngblems that await a solution and
therefore we still will see many new developmentshemoinformatics.
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